Grading skills using machine learning

Shashank Srikant

shashank.srikant@aspiringminds.com

Aspiring Minds research.aspiringminds.com

Research at Aspiring Minds

- Define product vision. Research and develop prototypes which demonstrate application of state of the art computer science technology in assessment products
- Publish at the very best conferences and venues
- Multiple outreach programs to popularize data science and machine learning
 - Data science for kids
 - ML-India
 - ASSESS Annual workshop on data science for assessments
 - AMEO 2015

CoDS 2016

ACL 2015

Release AMEO-2016, public dataset on employability outcomes, based on AMCAT data

Work on machine learning and crowdsourcing in speech evaluation

ICML 2015

Work on learning models for job selection

KDD 2014

Work on using machine learning in programming evaluation

NIPS 2013 Framework for using machine learning in assessments aspiringminds Employability Quantified

Machine learning

□ Has caught the imagination of the public

Important to understand intuition – handy tool

□ The core setup is 12th grade math!

Input skills

Language: Written & Spoken

Cognitive Skills

Functional Skills

Personality

Practical intelligence/Soft skills

Ground truth

- Rubric
 - Rules provided by experts

Key learning 1

Thou shall suffer in setting up a gold standard

Type1 and Type2 errors – Metrics

Pearson correlation – A metric

Pearson correlation – A metric

Prediction \longrightarrow Ground truth

Metric?

Trivia

Key learning 2

There's a perspective to skill grading when dealing with generic skill measures

E + 0.7*Q > 980

- Models need to be **interpretable**
- Should be theoretically plausible
- Models need to be simple
- Trade-off models between type 1 and type 2 error required

Type-1 vs. Type-2 between different models

Model	Equation	Type-2 Error	Type-1 Error
PSO(E,L)	L > 494, 0.42 * E + L > 722	0.21	0.21
PSO(E,L,Q)	E > 405, L > 401, 0.75 * Q + L > 874	0.21	0.20
PSO(E,L,CP)	CP > 360, 0.47 * E + 0.98 * CP + L > 1196	0.20	0.15

E : English comprehension, Q : Quantitative ability, L: Logical ability, CP : Computer programming ability

Key learning 3

Quant is seemingly useless in general cognitive tests

Thou shall suffer in setting up a gold standard

There's a perspective to skill grading when dealing with generic skill measures

Rubrics; Type1-Type2; Correlations; Interpretable models

Grading programs

Every TA's nightmare

THIS IS A BIG, FAT WASTE OF MY TIME!

Grading programs

A 2-3 hour fling for test takers with no *objective* feedback to improve

You are stupid. Goodbye.

Grading programs

coursera

MOOCs want a neat solution

UDACITY

Preliminaries

 \Box We want to predict certain values y_i

 \Box We have certain input values x_{ij}

 Simple example: Given a movie, predict how much business it will do
 Inputs: actors, theme, director, time of year, etc.

Preliminaries

...

In general, for n variables and m equations:

$$\begin{array}{l} x_{11}a_1 + \ldots + x_{1n}a_n = y_1 \\ x_{21}a_1 + \ldots + x_{2n}a_n = y_2 \end{array}$$

 $x_{m1}a_1 + \ldots + x_{mn}a_n = y_m$

- x_{ii} : Values we know
- a_i : Constants we do not know
- y_i : Values we want the constants to multiply and produce

□ Two variables and two equations:

$$2p + 4q = 6$$
$$3p + 5q = 8$$

$$p = 1, q = 1$$

Preliminaries

□ In general, for *n* variables and *m* equations:

$$\begin{array}{l} x_{11}a_1 + \ldots + x_{1n}a_n = y_1 \\ x_{21}a_1 + \ldots + x_{2n}a_n = y_2 \end{array}$$

 $x_{m1}a_1 + \ldots + x_{mn}a_n = y_m$

- x_{ij} : Values we know
- a_i : Constants we do not know
- y_i : Values we want the constants to multiply and produce

Remember Cramer's rule

if m > n, then there exists no solution!

□ In general, for *n* variables and *m* equations:

$$x_{11}a_{1}+..+x_{1n}a_{n} = y_{1}$$

$$x_{21}a_{1}+..+x_{2n}a_{n} = y_{2}$$

...

$$x_{m1}a_{1}+..+x_{mn}a_{n} = y_{m}$$

We don't fit exactly, we assume noise.

OLE formulation

Guess a_i s such that the sum of square differences b/w the values of ys "predicted" and actual ys is minimum

$$\min_{\boldsymbol{a}} \sum_{1}^{m} (y_i - \boldsymbol{x}_i^T \boldsymbol{a})^2$$

Employability Quantified

□ In general, for *n* variables and *m* equations:

$$x_{11}a_1 + \ldots + x_{1n}a_n = y_1 x_{21}a_1 + \ldots + x_{2n}a_n = y_2$$

 $x_{m1}a_1 + \ldots + x_{mn}a_n = y_m$

...

You have just learnt the most important and widely used machine learning technique!

What does a grader look for?

- 4. Isrthienenenditionenenditionenenditionenenditional of the first loop?
- a variable modified in the outer loop?
- a variable used in the conditional of the outer loop?

Score	Interpretation				
5	Completely correct and efficient An efficient implementation of the problem using right control structures and data-dependencies.				
4	Correct with some inadvertent errors Correct control structures and closely matching data-dependencies. Some silly mistakes fail the code to pass test-cases.				
3	Inconsistent logical structures Right control structures start exist with few correct data dependencies				
2	Emerging basic structures Appropriate keywords and tokens present, showing some understanding of the problem				
1	Gibberish code Seemingly unrelated to problem at hand.				

Feb 8-9 2016, IIT Madras

Capture data-dependencies between expressions

 $-i++ \rightarrow j < i$: var (i) related to var (j) – previously incremented

Key learning 4

When facing abstract inputs (like programs), think of features as counts

Aligning features

	Variables: 1 ; operator: % ; DS: 0; const: '2'	Variables: 2 ; operator: < ; DS: 0; const: 0 #input	Variables: 1 ; operator: ! = ; DS: 0; const: 'a'	Variables: 3 ; operator: + ; DS: 1; const:0 @ loop_condition	loop(loop (print)))	
P-1	1	2	0	0	0	good
P-2	0	4	3	0	0	bad
••••	•••	•••	•••	•••		•••
P-M	0	0	0	5	6	good

Aligning features

Other problems

<u>SVAR</u>

- Automated fluency, pronunciation and other speech features
- Back-office industry

Personality instruments

- Based on the big-5 traits
- Effective in sales and other similar job roles

Motor skills grading

- How can fine motor skills be measured?
- Blue-collared skills

Skill-demand maps

- Interactive maps to see which skills are the hottest, sliced by geography
- Democraticizing skill-salary link

What does all the data say?

Verieble			Unit of shows at	Odds
variable	coefficient	p-value	Unit of change*	(e^(coefficient*unit))
English score	0.0026	0.00	100	1.29
Quantitative Ability score	0.0003	0.38	100	1.03
Logical Ability score	0.0014	0.01	100	1.15
Domain Percentile	0.0037	0.04	10	1.04
10th class percentage	0.0083	0.16	10	1.09
12th class percentage	-0.0086	0.08	10	0.92
College Percentage	0.0151	0.01	10	1.16
Gender	-0.0442	0.60	1	0.96
Tier of college	-0.1270	0.03	1	0.88
Branch of study	0.1515	0.05	1	1.16
Tier of city	-0.0026	0.96	1	1.00
Openness to Experience score	-0.0253	0.58	1	0.98
Extraversion + Agreeableness Score	0.0001	1.00	1	1.00
Polychronicity score	0.0175	0.66	1	1.02
Constant	-4.1389	0.00		

Merit

A candidate with an AMCAT English & Logical score higher by 100 points each and domain percentile up by 10 points has 54% higher odds to get a job.

Bias

A candidate from a tier 2 campus has 12% (25%) lower odds and tier 3 campus has 24% (33%) lower odds to get a job even if he/she has the equal merit.

Other fun stuff – research.aspiringminds.com

Data science for kids!

We taught 6th-9th graders DS!

4 cities covered; including UIUC!

<u>ML-India</u>

Track the latest in ML in India Read prof. interviews Attend such meetups Volunteer and organize your own chapters <u>http://ml-india.org</u>

ters <===

